

Norwegian Public Roads Administration

ROBUST Computational Mechanics

Conclusions and recommendations

Workshop in Brussels May 30th 2006

By Otto Kleppe, NPRA

All the results from this Robust project will be available at a FTP-site from NPRA. The address on this ftp-site will be presented on the ERF site (link)

Norwegian Public Roads Administration Directorate of Public Roads

Findings

Sampling and computing of data:

- Acceleration data sampled ≥ 100 kHz
- Filtering CFC60 previous to TRAP w/CFC 180
- The barrier:
 - Restrained ends of soft guardrails possibly all guardrails
 - The bolts modelled by spot welds / deformable beams
 - The contact definition influence obvious the result
- The vehicle:
 - 900 kg car model GeoMetro, is comparable to cars used in full scale test
 - Seat improve the stiffness of the floor
 - Spinning wheel, suspension and the steering improved the vehicle trajectory and the behaviour

Findings

The friction coefficient we found in this project

- steel barrier (barrier-vehicle) µ= 0-0,1
- concrete barrier (barrier-vehicle) µ= 0,1-0,3
- sliding barriers (barrier-ground) μ= 0,6-0,7

And I repeat All simulation was blind prediction

Norwegian Public Roads Administration Directorate of Public Roads

Barrier B1 – N2

Directorate of Public Roads

Robust. GRD1-2002-70021

Influence on ground condition

The condition of the ground influence the performance very much

- Working width CM 765 935 = 160mm
- Working width FST 650 890 = 240 mm

Parametric study – material properties

The study is an indication

- Too few tests is carried out to make a conclusion
- > ASI, THIV and Dynamic deflection varies
 - Material property as E-module, Yield stress (~0 75%)
 - Material dimension as thickness (~0 1,3) based on % change
- The material properties should had an upper and a lower limit
 - Samples of the test items
 - One do not know what is placed on the road
- In CM we use representative values
 - not nominal values

A more thoroughly investigating would have been performed if we had more time and funding

Norwegian Public Roads Administration Directorate of Public Roads

Consequence of variation in thickness

Thickness of 3 mm guardrail can vary ± 0,23 mm according to EuroCode

According to the parameter study

- Variation of D when the thickness varies within requirement is aprox. 120 mm (717 593)
- The parameter study gives only an indication

Norwegian Public Roads Administration Directorate of Public Roads

Recommendation

Criteria and procedures for validation of CM

- The scatter of full scale tests must be taken into account for the validation of CM
- Results from Robust can be used as Benchmarks
- The validation criteria have to be based on checking procedure of the CM and compared to Benchmarks from this ROBUST
- That require a comprehensive documentation of the CM
- A validation body should approve the simulation
- Recommendation for further work
 - This research have concentrated on a rigid concrete barrier an a soft steel barrier – two extremity points
 - More investigations have to be carried out for other barrier types
 - Modelling and performance of the barrier as failure criteria
 - Improving the vehicle models, additional vehicle model types
 - And more

Norwegian Public Roads Administration Directorate of Public Roads

Evaluation

- ROBUST gives an extensive documentation of CM as a credible tool
 - Based on several FST and CM with the same test setup
- CM can be used for as well
 - Calculation of safety level of the safety barrier
 - Will the safety barrier behave as predicted?
 Calculation of probability of failure, risk analyses, reliability analyses

Norwegian Public Roads Administration Directorate of Public Roads

Evaluation

- ROBUST gives an extensive documentation of CM as a credible tool
- I personally wonder sometimes; One can design houses, bridges, aeroplane by using FE methods,

but a safety barrier have to be FST

Robust results may be a basis for improvement of safety products

Procedures need to be established before CM can be in operation – work in progress by CME

Conclusion

CM have a very good comparison to the FST

- The severity indices and the deflection is within the scatter from full scale tests
- Work is already been done and will continue to reduce the scatter for CM
- Procedure and restriction for using CM today
 - Documentation of the operator and institution have to be established
 - Validation criteria for CM have to be established.
 - The results from the ROBUST project could be used as benchmark test for some groups of safety barrier.
 - More groups of barrier have to be established for benchmark test.
 - CM with restriction could be use as an complimentary test to full scale test

Norwegian Public Roads
 Administration
 Directorate of Public Roads

Stantoartos

